Power Grids as Network Dynamical Systems Theoretical Challenges & Applications

Marc Timme

in collaboration with Dirk Witthaut, Martin Rohden, Andreas Sorge et al.

Network Dynamics

Max Planck Institute for Dynamics & Self-Organization

Bernstein Center for Computational Neuroscience, Göttingen

Georg August University, Göttingen

Networks are everywhere - most are dynamic

Nodes interacting with other **nodes**

Social Network:

Neural Circuit:

Gene Network:

Traffic Network:

Computer Network:

Economic Network:

Power Grid:

Person A is friend with person B

Neuron A sends signal to **neuron B**

Protein A activates gene B

Airport A offers flights to airport B

Server A interacts with **host B**

Stock A rises/falls with stock B

Power plant influences consumer B

...

All essential for everyday life!

Self-organized dynamics in networks

Biological Networks

$$(10^{-3} - 10^{10}s; 10^{-5} - 10^{-1}m)$$

- Neurons & neural circuits
- Horizontal gene transfer & evolutionary networks
- information transfer in biological networks

Networks of physical & artificial units

$$(10^{-2} - 10^{10}s; 10^{-9} - 10^6m)$$

- Network growth & disordered media
- Modern power grids (mind the renewables!)
- Autonomous robots & network control

Mathematical challenges for theory

Simultaneous occurrence of:

- Nonlinearity
- High dimensionality
- Complicated Network Connectivity
- Interaction Delays
- Strong Heterogeneities
- Stochasticity

common approach:

Mean Field Theories, Statistical Description, e.g. averaging over network

Mind the specifics (links, events, realizations, ...)!

Distributed collective grid dynamics ...

Local change → **Nonlocal** impact

Frankf. Allg. Zeitung, Nov 5,2006

... far from fully understood

>>"In the past, these operations were often performed with no problems",

E.O.N. officials declared in great surprise<< (Softpedia)

"We need more interconnections" says A.Merlin of RTE, France's power-grid operator (Bloomberg)

Which factors determine the collective dynamics of power grids?

How does the grid self-organize dynamically?

Dynamic models between abstract and detailed

Abstract: homogeneous, statistic, quasi-static, large-scale

<u>Detailed</u>: heterogeneous, component-level, dynamic, small-scale

Oscillator model:

- heterogeneous
- coarse-grained
- dynamic
- large-scale

Coarse, dynamic oscillator model of power grids

Generator

 $\theta(t)$ Phase at time t

P input/output power

K Transmission capacity

Motor

Images: physik3d.de, Wikipedia

Dynamic oscillator model

$$\frac{\mathrm{d}^2 \phi_j}{\mathrm{d}t^2} = P_j - \alpha \frac{\mathrm{d}\phi_j}{\mathrm{d}t} + \sum_{i=1}^N K_{ij} \sin(\phi_i - \phi_j)$$

 $\phi_j(t)$ - phase deviation from base Ωt , $\Omega = 2\pi 50 \mathrm{Hz}$

lpha - effective dissipation

 P_i - power consumed (< 0) or generated (> 0)

 K_{ij} - Transmission capacity of line

DEs derived from physics of synchr. machines in limit $|\phi_j| \ll \Omega$

Part I: Decentralization (slightly) decreases stability

Robustness to dynamical perturbations of same order of magnitude

Decentralizing increases structural robustness

Rohden et al., Chaos, 24:013123 (2014);

... for model topologies ... and for British grid

Dezentralization decreases synchronization threshold

M. Rohden et al., *Phys. Rev. Lett.* 109:064101 (2012)

Counteracting effects of decentralization

Dezentralization

- slightly deminishes dynamic stability against instantaneous perturbations
- decreases synchronization threshold = **increases structural robustness**

Part II: Braess' paradox: adding lines may cause failures

Mechanism of Braess paradox: geometric frustration

(a) Original network: Flows and phases at K

(c) Steady-state order parameter

(b) Adding a transmission line: Change of the energy flow

$$\sum_{(i,j)\in\mathcal{C}} (\phi_i - \phi_j) = 2\pi n, \ n \in \mathbb{Z}$$

"geometric frustration" → Additional capacity "breaks the balance"

Geometric Frustration in Flow Networks

Flow balance at every node *j*

$$P_j + \sum_{l=1}^{N} K_{j,l} S_{j,l} = 0$$

hyper-plane (N=|V| eqns for M=|E| variables)

No overload at every edge (j,l)

$$|S_{j,l}| \le 1$$

hyper-polygon
(M inequalities)

Load relate to **phase differences**

$$\Delta_{j,l}^{+} = \arcsin(S_{j,l})$$
$$\Delta_{j,l}^{-} = \pi - \arcsin(S_{j,l})$$

2^M discrete points

Geom. constraints (cycles in networks)

$$\sum_{\mathrm{cycle}} \Delta_{j,\ell} = 0 \pmod{2\pi}$$
 excludes certain combinations

In addition: stability conditions

Braess' paradox on real topology

Braess' paradox prevails ...

e.g., small world networks:

... but not seen in "mean field"

Overview of Recent Advances ...

Counter-acting impact of decentralization:

Phys. Rev. Lett. (2012) - Editorial Suggestion

Motif-guided stability analysis

Chaos (2014);

Braess' paradox

In flow networks with relevant **phase relations** *New. J. Phys.* (2012);

Current Directions I -- nonlocal failure propagation

Multiple feedbacks collectively induce nonlocal failures Eur. Phys. J. B (2013)

Mechanisms?

Current Directions II - predicting critical edges prior to outage

Network redundancies complement loads

Optimal Prediction?

Current Directions III -- coupling market networks to dynamics

Trading Network (who buys where & how much)

Flow Network (power distribution over the grid)

How to set up economic incentives?

Recent Progress – Fundamentals

Network Growth
single link matters!
Nature Phys. (2011);

Small World Networks

structure: Watts & Strogatz, *Nature* (1998), >21000 citations now relaxation **dynamics** *Phys. Rev. Lett.* (2012a)

Network Inverse Problem:

inference and design

Front. Comput. Neurosci. (2011); New. J. Phys. (2011);

Recent Progress – **Neurophysics**

Non-monotonic spike sequence processing in neurons BMC Neurosci. (2013); PLoS Comput. Biol. (under review, 2014)

Non-additive coupling & plasticity in networks PLoS Comput Biol. (2012, 2013); Phys. Rev. X (2012)

Combinatorial Processing exploiting heterogeneities joint PhD students with A. Fiala (Uni-Bio); PLoS ONE (2011);

Recent Progress - Dynamics in Engineering & Computation

Intelligent Dynamical Systems: heteroclinic computing *Phys. Rev. Lett.* (2012b)

Control for Communication Networks & Robotics

→ self-organize versatile functions

Nature Phys. (2010); patent (2013); New J. Phys. (2012a);

Dynamically Smart Power Grids

Phys. Rev. Lett. (2012c), New J. Phys. (2012b); EPJ B (2013); Chaos (2014); EPJ-ST, under review (2014)

Funding & Cooperation

Public

- Max Planck Society
- University of Göttingen
- IMPRS Physics of Biological and Complex Systems
- GGNB Graduate School for Neurosciences & Molecular Biosciences
- DFG German Science Foundation
- BMBF German Ministry for Education and Research

<u>Industry</u>

Thanks to ...

Network Dynamics

Jose Casadiego Wen-Chuang Chou Shubham Dipt

Sarah Hallerberg Sven Jahnke Benedict Luensmann

Debsankha Manik Fabio Schittler-Neves Florencia Noriega

Martin Rohden Benjamin Schaefer Nahal Sharafi

Andreas Sorge Dirk Witthaut Xiaozhu Zhang

Jan Nagler, Andre Fiala, Florentin Wörgötter,... MPIDS & BCCN, Univ. Göttingen

Raoul-Martin Memmesheimer Nijmegen

Srinivas Gorur Shandilya Yale

Moritz Matthiae Aarhus

YOU all for your attention!

Questions & Comments Welcome!

Previous studies on this model

Approximation to grid of Zealand (Denmark)

- simple topology
- specific parameters
- simulations of impact of temporary perturbations

Filatrella et al., *Eur. Phys. J. B*, 61:485 (2008)

Part 0: Analysis of stationary dynamics (first N=2)

$$\ddot{ heta_1}+\dot{ heta_1}-K\sin(-\Delta heta)=P_0$$
- $\ddot{ heta_2}+\dot{ heta_2}-K\sin(\Delta heta)=-P_0$

$$\Delta \ddot{\theta} + \Delta \dot{\theta} + 2K \sin(\Delta \theta) = 2P_0$$

Coexistence of blackout and stable operation

Rohden et al., *Chaos*, **24**:013123 (2014); Manik, Witthaut et al., in prep. (2014)